30 July 2019

Commissioned by:

UNITED NATIONS

CATALYST

SUSTAINABLE ENERGY FOR ALL

Prepared by:

With support from:

Welcome and Introductions

Panelists:

- Jem Porcaro, Lead Energy Access Specialist, SEforALL
- Christine Eibs Singer, Senior Associate, Catalyst Off-Grid Advisors
- Raihan Elahi, Lead Energy Specialist, World Bank

Q&A Session

Powering Health Care

Key challenges to powering public institutions with off-grid solar

Key challenges to powering public institutions with off-grid solar

Lasting Impact...

Commissioned to:

- Help public, private and philanthropic stakeholders design and sustainably implement robust off-grid public-facility electrification projects.
- Encourage innovation in the way off-grid PV solutions are designed for and delivered to public facilities.
- Recommend areas for further research

Sustainability vs Scale

Questions

What are the critical decisions made at each stage of a project's lifecycle that most significantly drive project sustainability?

What are the drivers of these decisions?

What are the consequences of these decisions?

What innovative approaches and insights have been observed?

Report methodology

Sustainability framework

Sustainability Framework Pillars	Organizational		Technie	cal	E	Economic					
Three "pillars" of sustainability— Organizational, Technical, and Economic	Arrange project stakeholders to preserve systems' long-term functionality		Make certain installed systems are robust and fit for purpose		Ensure financing and incentives are structured for the long haul						
MODEL SUSTAINABILITY FRAMEWORK											
Each pillar contains four project lifecycle phases—Inception, Design, Build, and Operation and Maintenance (O&M)	Define core goals and approach	Finalize facility siting, expected needs, and system sizing		Undertake procureme and execut installation contracts	ent te	Ensure system performance for its expected life					
Project Lifecycle Phases	I. Inception	II. D	Pesign	III. Build		IV. O&M					

Delivery models

7 case studies

Selected case studies

Project Name	Country(ies)	Dates	Target(s)	Project Scale	Models	pub. priv. phil.
Chhattisgarh State Renewable Energy Development Agency (CREDA)	India	2011 - Ongoing	Health	984 facilities electrified to date	I. Inception II. Design III. Build IV. O&M	
Innovation Africa (IA)	Malawi, Tanzania, Uganda	2008 – Ongoing	Health and Education	110 facilities electrified to date	I. Inception II. Design III. Build IV. O&M	
Energy for Rural Transformation – II (ERT-II)	Uganda	2008- 2016	Health and Education	1082 facilities (560 education and 522 health)	I. Inception II. Design III. Build IV. O&M	

Key insights

SUSTAINABL

ENERGY

FOR ALL

SUSTAINABLE

ENERGY

FOR ALL

Emerging cases: KOSAP

Key Design Features:

- ✓ World Bank funds cover supply & installation
- ✓ Private Sector Providers (PSPs) selected on lowest NPV supply, installation, maintenance
- ✓ 10-15 year O&M contracts with PSPs; performance based
- ✓ Kenya Power owns retail relationship; collecting tariffs from facilities/local governments, paying PSPs

Possible Sustainability Challenges:

- ? Local governments/tariffs enough to cover O&M
- ? Kenya Power carries off-taker risk
- ? Capacity of Kenya Power to monitor PSP performance

Emerging cases: ROGEP

Key Design Features:

- ✓ Government inception (design); ESCOs (design), build and maintain
- ✓ Timely Government payment based on key performance indicators
- ✓ Remote monitoring
- ✓ MIGA guarantee

Possible Sustainability Challenges:

- ? ESCO's ability to raise CAPEX
- ? Remote monitoring across West Africa untested
- ? O&M post year 7 contract period unknown

SUSTAINABI

FOR AL

ENERGY

Ingredients for Sustainability

- 1. Sustainability requires an all-encompassing definition of success
- 2. Sustainability demands integrated knowledge and sector-specific expertise
- 3. Sustainability requires alignment of public and private sector incentives
- 4. Leveraging of philanthropic models and actors
- 5. Sustainability is enhanced when energy is a core element in facility planning
- 6. Sustainability requires both the ability and willingness to pay for electricity

Opportunities for further investigation

- 1. Central inventory of data on current state of energy access in health facilities
- 2. Improved site auditing tools and integration of survey techniques highlighting best practices, focus on understanding facilities' future energy needs and scaling systems
- 3. Holistic policy and regulatory planning for public-facility electrification including financing and technical standards
- 4. System design toolkit including cost-benefit analysis between technologies and scale, and calculators for long-term revenues and operating costs
- 5. Key Performance Indicators specific to off-grid public electrification programs
- 6. Environmental sustainability toolkit covering system disposal and recycling
- 7. Sustainability framework built for achieving organizational, technical, and economic sustainability in health facilities

For more information

Link to full report: poweringhc.org/resources/

www.unfoundation.org

www.SEforALL.org

https://www.ukaiddirect.org/

OFF GRID ADVISORS

https://www.catalystoffgrid.com/

